skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schoenell, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a comprehensive recalibration of narrowband/medium-band and broadband photometry from the Southern Photometric Local Universe Survey (S-PLUS) by leveraging two approaches: an improved Gaia XP synthetic photometry (XPSP) method with corrected Gaia XP spectra, and the stellar color regression (SCR) method with corrected Gaia Early Data Release 3 photometric data and spectroscopic data from LAMOST Data Release 7. Through the use of millions of stars as standards per band, we demonstrate the existence of position-dependent systematic errors, up to 23 mmag for the main survey region, in the S-PLUS iDR4 photometric data. A comparison between the XPSP and SCR methods reveals minor differences in zero-point offsets, typically within the range of 1–6 mmag, indicating the accuracy of the recalibration, and a twofold to threefold improvement in the zero-point precision. During this process, we also verify and correct for systematic errors related to CCD position. The corrected S-PLUS iDR4 photometric data will provide a solid data foundation for conducting scientific research that relies on high-precision calibration. Our results underscore the power of the XPSP method in combination with the SCR method, showcasing their effectiveness in enhancing calibration precision for wide-field surveys when combined with Gaia photometry and XP spectra, to be applied for other S-PLUS subsurveys. 
    more » « less
  2. Context. This paper presents the first public data release of the S-PLUS Ultra-Short Survey (USS), a photometric survey with short exposure times, covering approximately 9300 deg2of the Southern sky. The USS utilizes the Javalambre 12-band magnitude system, including narrow, medium, and broad-band filters targeting prominent stellar spectral features. The primary objective of the USS is to identify bright, extremely metal-poor (EMP; [Fe/H] ≤ −3) and ultra-metal-poor (UMP; [Fe/H] ≤ −4) stars for further analysis using medium- and high-resolution spectroscopy. Aims. This paper provides an overview of the survey observations, calibration method, data quality, and data products. Additionally, it presents the selection of EMP and UMP candidates. Methods. The data from the USS were reduced and calibrated using the same methods as presented in the S-PLUS DR2. An additional step was introduced, accounting for the offset between the observed magnitudes off the USS and the predicted magnitudes from the very low-resolution Gaia XP spectra. Results. This first release contains data for 163 observed fields totaling ~324 deg2along the Celestial Equator. The magnitudes obtained from the USS are well-calibrated, showing a difference of ~15 mmag compared to the predicted magnitudes by the GaiaXPy toolkit. By combining colors and magnitudes, 140 candidates for EMP or UMP have been identified for follow-up studies. Conclusions. The S-PLUS USS DR1 is an important milestone in the search for bright metal-poor stars, with magnitudes in the range 10 <r ≤14. The USS is an ongoing survey; in the near future, it will provide many more bright metal-poor candidate stars for spectroscopic follow-up. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)